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ABSTRACT 

Boundary layer convective eddies (BLCE) observed via synthetic aperture radar 

(SAR) on 17 June 1993 during the Hi-Res 2 field experiment are investigated using a 

three-dimensional nonlinear spectral model derived from the shallow Boussinesq 

equations. Boundary conditions are appropriate for marine atmospheric boundary layer 

(MABL) flow and allow for heat and momentum fluxes across the lower boundary, as is 

required to determine sea-surface stress patterns. Enhancements made to the model for 

this study include the addition of an inversion layer, an unstable surface layer and weighted 

nonlinear numerical dissipation. A more numerically accurate integration scheme is also 

incorporated. 

A linear stability analysis of Hi-Res 2 data finds maximum growth rates for 

disturbances having horizontal wavelengths that match those determined from the 17 June 

1993 SAR image. Desirable by-products of the analysis include the determination of 

physically plausible mean horizontal wind profiles and inversion strengths. 

Two model integrations are performed using identical measured atmospheric input 

values and initial conditions, but with different dissipation weights. The run with weaker 

dissipation, Case 1, exhibits a fully three-dimensional cellular structure that is consistent 

with SAR imagery and that is aligned nearly normal to the direction of the mean wind. 

Case 2, with stronger dissipation, is quasi-two-dimensional and aligned 14 to the right of 

the direction of the mean wind. Cross sections of potential temperature, streamfunction 

and vertical velocity for both cases reveal that the inversion is capping the BLCE with 

only minor anomalies in the inversion layer. Magnitudes of several dimensional quantities 

are compared with observations and/or other studies with encouraging results. 

19970716 138 
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Chapter 1 

INTRODUCTION 

Since its civilian introduction nearly three decades ago, satellite- and aircraft-borne 

synthetic aperture radar (SAR) has become a viable instrument to aid the study of the 

marine atmospheric boundary layer (MABL). The potential usefulness of SAR to 

meteorology and oceanography was predicted by Vesecky and Stewart (1982), and SAR 

today continues to show great promise for MABL research, as recent studies suggest 

(e.g., Alpers and Brummer 1994; Sikora etal. 1995; Mourad 1996). 

SAR works by detecting variations in radar reflectance from the ocean surface 

(Thompson, et al. 1983). The backscatter patterns are generated by differences in surface 

roughness and are mapped to create high-resolution images. Wind-imposed stress is the 

primary mechanism for the generation of centimeter-scale capillary waves (Vesecky and 

Stewart 1982), and this wavelength magnitude corresponds to that which reflects waves 

via Bragg resonance scattering. Generally, SAR images depict high-stress regions as 

white and low-stress regions as black (see Sikora et al. 1995, for a high quality SAR 

image).   In the absence of intense oceanographic and synoptic-scale atmospheric wave 

forcing phenomena, we may assume that the waves and resultant sea surface stress 

patterns are due almost entirely to smaller kilometer-scale atmospheric effects, namely 

secondary boundary layer circulations (Sikora et al. 1995). Therefore, SAR appears well 

suited to studying the wind variability caused by secondary circulations within the MABL. 

By proper interpretation of a SAR image, we can theoretically deduce the conditions in 

the MABL that create the observed stress patterns, as well as regions of convergence and 

divergence at the surface (Gerling 1986; Alpers and Brummer 1994). Before employing 

SAR as a reliable remote sensing tool for the determination of surface layer wind speed 



and direction, we must first folly understand the effects of MABL flows on the sea surface 

(Thompson et al. 1983). To accomplish this objective, here we model secondary 

circulations in the MABL and study their effects on modulating sea surface stress. 

There are two major types of secondary boundary layer circulations that can develop 

and organize the sea surface stress patterns. The first comprises quasi-two-dimensional 

features, commonly referred to as boundary layer rolls; the second comprises three- 

dimensional flows, called boundary layer convective cells (Brown 1980). Three- 

dimensional cells may form independently of rolls when surface layer winds are light, or 

from rolls when thermal forcing is increased sufficiently (Woodcock 1940, 1975; 

Deardorff 1976). There are three principal instability mechanisms responsible for the 

formation of rolls and cells in the atmosphere: inflection point instability, parallel 

instability and thermal instability (Brown, 1980; Stensrud and Shirer, 1988; Etling and 

Brown, 1993). The first two draw energy from the background wind shear in the 

boundary layer (Faller 1965). The inflection point instability mechanism taps the normal 

component of the mean shear and satisfies the Rayleigh and Fjortoft conditions by 

requiring a point of inflection and a vorticity maximum within the background wind profile 

(Kundu 1990). Parallel instability draws energy from the parallel component of the mean 

shear via the Coriolis terms (Lilly 1966). Due to the length and time scales of the 

secondary flows under consideration, the parallel instability mechanism is of little 

consequence at our scale (Brown 1980). The third mechanism, thermal instability, derives 

its forcing from the air-sea temperature difference and can be likened to classic Rayleigh- 

Benard convection. For consistency with Shirer et al (1996), we refer to the rolls and 

cells as boundary layer convective eddies (BLCE). The vertical extent of the BLCE is 

given by the boundary layer depth, and their primary effect is the stabilization of the 

atmosphere through the transport of heat and momentum. 



Numerous projects have been undertaken to model BLCE using nonlinear dynamical 

systems (e.g., Shirer 1986; Haack and Shirer 1992; Laufersweiler and Shirer 1995). The 

primary goal of these studies was to determine the temporal and spatial responses of 

BLCE to different forcing rates, both mechanical and thermal. These models successfully 

capture rolls and provide the fluxes of heat and horizontal momentum as well. However, 

due to the limitations imposed by the rigid, stress-free and perfectly conducting upper and 

lower boundary conditions, we are unable to use any of these models to deduce the role 

BLCE play in perturbing the sea surface, as is required to apply the remote sensing 

capabilities of SAR to the MABL. 

To overcome this obstacle, Zuccarello (1994) developed, and Lambert (1995) later 

improved, a nonlinear, three-dimensional, Boussinesq model that provides for subgrid- 

scale momentum and heat fluxes at the lower boundary. Two constant forcing parameters 

are derived from Monin-Obukhov similarity theory to capture the flux contributions in the 

surface layer; these yield thermodynamic forcing and momentum dissipation. The new 

boundary conditions are more realistic and can be used to deduce wind-imposed stress on 

the sea surface. Following the success of Laufersweiler and Shirer (1995), Lambert 

introduced (after his 1995 work) an inversion layer into the model to cap moderately 

forced secondary circulations. However, we still specify the upper boundary to be rigid, 

stress-free and perfectly conducting, as was done in previous MABL models. 

The initial results obtained by Zuccarello (1994) in his case study were encouraging, 

for they indicated that the model adequately captures the spatial characteristics of the 

MABL secondary circulations. Additionally, the component of the mean wind 

perpendicular to the roll axis (i.e., the cross-roll mean wind) and the period of the system 

reflect those that are typically observed in the atmosphere. However, Zuccarello did 

encounter several problems during his case study. One was the presence of an unknown 

energy source that prevented model equilibration during integration. The second was a 



vertical velocity maximum that appeared at the lower boundary, instead of within the 

boundary layer at the typically reported height of 0.3 times the domain depth (Lenschow 

et al. 1980). Lambert (1995) conducted an energetics analysis and identified an 

extraneous kinetic energy source at the lower boundary of the model. By imposing two 

additional boundary conditions on the flow, he eliminated the unwanted energy source as 

well as the vertical velocity anomaly, enabling model integration and quasi-equilibration. 

Lambert also developed a subroutine to construct the model output and aid in the 

visualization of the model solution. The apex of his work was the creation of an x-y 

planview that depicts reasonable wind-imposed stress patterns on the sea surface. 

The purpose of this study is to continue Zuccarello (1994) and Lambert's (1995) work 

on the impact BLCE have on sea surface stress, with an emphasis on visualization of the 

model solutions. In Chapter 2 we summarize background theory and model development, 

then review the system of partial differential equations and the spectral conversion. We 

conclude the chapter by describing the details of the computer model. In Chapter 3 we 

note improvements made to the model since Lambert's (1995) work, and in Chapter 4, we 

present case studies from the Hi-Res 2 field experiment (Lambert 1995; Sikora et al. 

1995). We conclude by proposing areas for future research. 



Chapter 2 

MODEL OVERVIEW 

Boundary layer convectlve eddies (BLCE) have been the focus of many studies in 

recent years. A number of these employ nonlinear dynamical systems to model kilometer- 

scale circulations (e.g., Shirer 1986; Haack and Shirer 1992; Laufersweiler and Shirer 

1995). The motivation behind these studies has been to explain the temporal and spatial 

responses of BLCE to thermal and mechanical forcing mechanisms. Such models 

successfully capture the secondary circulations and provide the associated vertical flux 

profiles of heat and horizontal momentum-but within the boundary layer, not across the 

boundaries themselves. For simplicity, the upper and lower boundaries used in these 

models are rigid, stress-free and perfectly conducting. Hence, fluxes at or near the 

boundaries can not be adequately represented and the effects of BLCE on sea surface 

stress can not be deduced, as is required for the application of SAR technology to the 

study of the MABL. 

Zuccarello (1994) develops a spectral model that incorporates nonzero subgrid-scale 

momentum and heat fluxes at the lower boundary, allowing the study of BLCE-induced 

sea-surface stress. In specifying the boundary conditions, he invokes similarity theory 

(Stull 1988). For simplicity and consistency with earlier models, Zuccarello keeps the 

upper vertical boundary rigid, stress-free and perfectly conducting. Lambert (1995) 

expands upon Zuccarello's work in several areas: he (a) conducted an energetics analysis 

to identify an extraneous energy source and vertical velocity anomaly at the lower 

boundary; (b) reformulated the lower boundary conditions to eliminate the problems in (a); 

and (c) developed an output subroutine to aid the analysis and interpretation of the 



model solution, with an emphasis on the lower boundary stress planview for comparison 

with SAR. After finishing his thesis, Lambert incorporated an inversion subroutine into 

the computer model. 

Here, we extend the work done by Zuccarello and Lambert on their BLCE model, 

focusing primarily on visualization of the model solutions. 

2.1. Summary of Model Development and Background Theory 

Zuccarello (1994) provides a detailed account of model development and background 

theory. Here, we summarize Zuccarello's work, as did Lambert (1995), and encourage 

interested readers to review his unabridged presentation. We have modified Zuccarello 

and Lambert's temperature base state to allow for the inclusion of an inversion and an 

unstable surface layer of the type used by Laufersweiler and Shirer (1995). 

We employ the shallow Boussinesq system of equations to capture the convective 

nature of boundary layer secondary circulations. These circulations, manifested as two- 

dimensional rolls or three-dimensional cells, generally transport heat upward and 

horizontal momentum downward, while tending to alter the vertical shear in the boundary 

layer. 

The basic, or conductive state, is considered to be time-independent, isopycnic, 

hydrostatic, incompressible and horizontally moving (Shirer 1986). It is represented by 

the standard meteorological variables with subscript 0 in the following equations: 

v0(z) = V(*) = tf(*)i + r(z)j (2.1) 

A,=Ax> (2-2) 



Po{z) = Poo-Poogz> (24> 

where the 00 subscript denotes atmospheric values at the bottom of the domain and 0h(z) 

is the height-dependent portion of the temperature profile. We have rewritten the thermal 

base state using potential temperature 0o(z), which is composed (in the model) of three 

different linear profiles in the surface layer, the neutral boundary layer and the inversion 

layer (Section 3.1). Moreover, the mean MABL density is essentially equal to the density 

at the sea surface (2.2). 

We represent rolls and cells as perturbations superimposed on this basic state. 

Variables unique to the secondary circulation perturbations are denoted by primes in the 

following equations: 

u'{x,y,z,t) = u(x,y,z,t)-U{z) (2.5) 

v'{x,y,z,t) = v[x,y,z,t)-V{z) (2.6) 

w'(x,y,z,t) = w(x,y,z,t) (2.7) 

p'{x,y,z,t) = p(x,y,z,t)-p00 (2.8) 

0'{x,y,z,t) = 0(x,y,z,t)-0o{z) (2.9) 

p'{x,y,z,t) = p{x,y,z,t) - p0{z). (2.10) 

We have chosen the horizontal domain to be infinite and cyclically continuous, with 

gravest modes Lx and Ly, where Lx and Ly are the xandy domain lengths necessary to 

encompass one entire wavelength L of the circulation (Z," = Lx~ + Ly~ ). The vertical 

domain extends from the lower boundary, hw = 10 m (anemometer height), to the cloud 

top height (zT). Figure 2.1, which shows one half of the horizontal domain, clearly depicts 



the secondary circulation as bounded by the base of the inversion z, and h^. Since 

temperature decreases and wind speed increases with height, we can visualize in the 

air/sea interface layer how the net vertical heat flux at z = his should be positive and the 

net vertical transport of horizontal momentum should be negative. 

We rewrite the entire domain in dimensionless form as (0,0,0) <_(x*,y*,z*) <_(1,1,1). 

The model is designed to capture the circulation above hw and employs surface layer 

similarity theory (Stull 1988) to parameterize the transport of heat and momentum below 

his via the boundary conditions described in the next section. 

MODEL BLCE CIRCULATION 

(z*=1) 
Stable 

Inversion 
Layer 

Nearly 
Neutral 
MABL 

(z* = z*) 

(z* = 0) 
Unstable 

Air/Ocean 
Interface Layer 

Warm Ocean 

Fig. 2.1. A schematic cross section of a BLCE in the MABL, in which the air/ocean interface layer is 

greatly exaggerated. The air/ocean interface layer potential temperature decreases and the wind 

speed increases with height. The model domain extends from z - h^ (z* = 0) to z = zT (z* = 1) 

(Adapted from Shirer et al. 1996). 



2.2. The System of Partial Differential Equations 

In order to make our Boussinesq system of equations dimensionless, Zuccarello 

(1994) offers the following definitions: 

v'H = ^- (2-11] 
ZT      "LB 

w' = -^|- (2-12) 
Zj LB 

x = x"Lx (2.13) 

y = /Ly (2.14) 

z = z*(zT-hLB)+hLB (2.15) 

t = t*(jrzhsL (2.16) 
K 

ff=     0tyK0oo (217) 

g{zT-hLBf 
,2 

P' = (
PP™\r (2-18) 

V(z) = \V(zT)\vV) (2.19) 

f = —J-!L— (2.20) 

V = ar Ai + a^_j + ^_k) (2.21] 
<2c       ' oy      oz 

where the constant thermal conductivity is represented by K, the constant eddy viscosity 

by v and the roll aspect ratios by ax and ay, defined below. We then eliminate pressure 

from the momentum equation by taking the curl to form a vorticity equation. Together 

with the thermodynamic and continuity equations, the resulting dimensionless system of 

equations is 
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at & 

^   *V ' = i>V2(v x v*) -f*P[v x (k x v*)] + P(V x 0*k) - ite[v x (v* • Vv*)] 

-[Vx(v*«Vv*)]-/fe Vx \w 
dz 

V«v =0. 

(2.22) 

(2.23) 

(2.24) 

In (2.22), Lambert (1995) chose -{d0* /&*) = Ra = -lto represent the background 

neutral boundary layer. We can therefore extract five dimensionless parameters from our 

system of equations~the eddy Prandtl number, P; the roll aspect ratios, ax and ay; the 

Reynolds number, Re; and the Rayleigh number, Ra. Their definitions are 

(2.25) 

(2.26) a = 

P=V/K 

ay = _^T-hLs) 

Be = ^f(zT%zT-hLB)lK 

Ra = -'- 
VKTW 

(2.27) 

(2.28) 

(2.29) 

where ABL0 is the potential temperature difference across the boundary layer. The 

Reynolds number characterizes the dynamic forcing by the mean wind shear in the basic 

state, while the Rayleigh number represents thermodynamic forcing throughout the (nearly 

neutral) boundary layer. 
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For the dimensionless Boussinesq system of differential equations, we choose the 

horizontal domain to be cyclic and specify the upper vertical boundary to be rigid, stress- 

free and perfectly conducting. The lower boundary, however, is an important source of 

thermal energy for secondary circulation development and a sink for momentum (Fig. 2.1). 

In specifying lower boundary conditions, Zuccarello (1994) defines two parameters to 

control the forcing: the Schramm momentum constant, sm, and the Schramm temperature 

constant sT, both of which are positive, consistent with Figure 2.1. The upper and lower 

boundary conditions are 

0*(\) = 0 (2.30) 

dz dz* 
w(l) = 0 (2.31) 

*-(o)+5rMoi = o (2_32) 
dz 

u(0)-sm^ = 0 (2.33) 

A0)sm^ = 0 (2.34) 

^-^ = 0. (2.35) 

Note that (2.35), which follows from (2.32) and (2.34) via the continuity equation, is not 

ideal in that it involves derivatives of the vertical velocity w* at the lower boundary, 

instead of w" itself. In early model runs, this anomaly manifested itself by producing 

vertical velocity maxima at the lower boundary, instead of the more physically reasonable 

w* = 0. To overcome this obstacle, Lambert (1995) introduces two new boundary 

conditions: 
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w (0) = 0 (2.36) 

A"(0) = 0, (2.37) 

where A* is the vector streamfunction defined in the following section. In the atmosphere, 

the BLCE vertical velocity perturbation at hw = 10 m (z = 0) is not identically zero, but 

to an excellent approximation we may regard it as such. 

To attain boundary conditions (2.36) and (2.37), Lambert (1995) redefines the vertical 

streamfiinction basis functions instead of rewriting the entire model. For a complete 

account of this procedure, we refer the reader to Appendix B of his work. 

2.3. From Differential Equations to Computer Code: The Spectral Conversion 

To create a spectral model from our system of partial differential equations (PDEs), 

Zuccarello (1994) employs the Galerkin technique or spectral method (Higgins 1987). 

When applied to the vorticity (2.23) and thermodynamic (2.22) equations, this method 

yields a nonlinear dynamical system (NDS). Originally, the NDS consisted of 60 

equations~20 for temperature and 40 for streamfunction~but was reduced to 50 when 

Lambert (1995) introduced new lower boundary conditions (2.36) and (2.37). The new 

NDS still has 20 equations for temperature but now has only 30 for streamfunction. 

Since the velocity perturbation vector v* is nondivergent, it can be represented by the 

curl of a vector streamfunction A*, whose components are ys and TJ in the x - andy - 

directions, respectively: 

v*=VxA*=Vx(</i)+Vx(/7*j). (2.38) 
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Truncated Fourier expansions for 0\ y? and rf are composed of time-dependent 

amplitudes, spatially-dependent trigonometric functions with horizontal wavenumbers / 

and m, and vertical basis functions, Fj(z) and hq(z ): 

4     4 

e\x\y\z/)=YLoAtyW-yy^) (2-39) 
1=0 ;=1 

p=0<f=l 

4      3 

where 

,7>\/,z\0=IZU0*M*VKM> <2-41) 
p=0«=l 

*%(*",/) = 1 (2-42) 

*ng,(x*,.y*) = sin2^/x* sin2^7My* (2.43) 

fng2(**>>'*) = sin2^/x* cos2;zrwy* (2.44) 

fr/g^x*,^*) = coslidx* sin2^7wy* (2.45) 

trig4(x*,y*) - COSITTIX* co$2nmy*. (2.46) 

Here the orthogonal #* vertical basis functions are 

F,(z*) = cosha>,z* sinhcoxz* for sT < 1 (2.47) 
5rÖ>! 

^(z*) = cosfi>,z* — sinfi>,z* for sr>l, (2.48) 
1V     / c  m sTeol 

where 

Sj.fi>, =tanhfi>1  for 5r<l (2.49) 

5j.fi>, = tancox for 5r>l, (2.50) 

and 
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Fh*) = cosco/ —sin©/ for j = 2,3,4, (2.51) 

where 

sTa>j=tona>j for 7 = 2,3,4. (2.52) 

The nonorthogonal j/* and 7* vertical basis functions are expressed as differences: 

hq{z*) = (cos mqz* - smmq sin ar/) - (cos arq+lz* - smmq+1 sin mq+xz*) for # = 1,2,3, (2.53) 

where 

smmc = cot G7C    for c = 1,2,3,4. (2.54) 

To produce our NDS (2.39) - (2.41) using the standard Galerkin procedure (Higgins 

1987), we insert the 9\ yf and rf expansions into the dimensionless PDEs multiplied by 

the corresponding basis functions, and integrate over the domain (Shirer 1987). 

Appropriate trigonometric identities are applied to simplify the resulting terms in the 

equations. 

In the NDS, each PDE term is represented as the product of a 50 X 50 matrix and a 

50-element amplitude coefficient vector, allowing us to write the model equations in the 

form: 

Ay = By + C(y)y, (2.55) 

where A is a 50 X 50 invertible matrix of inner products; B is a 50 X 50 constant linear 

matrix, determined by P, Re, Ra, ax, ay and the Fourier coefficients of the background 

temperature and wind; and C is a 50 X 50 linear-in-^ matrix from the advective terms of 

the two systems of PDEs. The 50-element column vector y contains 20 time-dependent 
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spectral amplitudes for temperature, T^, and 30 time-dependent spectral amplitudes for the 

streamfunction components, y/n and npq. The 50-element column vector y represents 

the temporal derivatives of the spectral amplitudes in >>. Since A is invertible, we may 

rewrite (2.55) in the form 

y = A-lBy + A~lC(y)y. (2.56) 

This is the form used in the numerical integration. 

2.4. The Computer Model 

The physical and mathematical model described in the preceding sections was encoded 

by Zuccarello (1994) using the FORTRAN programming language; it was originally 

compiled with a UNIX-based WATFOR77 compiler. To add portability, flexibility and 

ease of operation, we developed a PC version of the code using Microsoft's Fortran 

Power Station 4.0 software. Code editing, compilation and execution are now done 

easily. 

The sequence of steps necessary to carry out a SAR analysis using the model are 

summarized by the flowchart in Figure 2.2 and are referenced periodically throughout the 

text that follows. As with any study, we first select a case (Figure 2.2, Step A) and 

specify atmospheric input parameters like those shown in Table 4.1. 

Using a subroutine discussed in Appendix A of Zuccarello (1994), we input the wind 

speed and mixing ratio at 10 m as well as the air-sea temperature difference, and employ 

Monin-Obukhov surface layer similarity theory to determine values for the Schramm 

momentum and temperature constants, sm and sT (Figure 2.2, Step B). Based upon these 
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L INTEGRATE 

Fig. 2.2. Summary of required steps in a SAR analysis. 
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input values, the code calculates values for COJ and tnc, where j,c = 1,2,3,4, and then 

iteratively solves (2.49), (2.50), (2.52) and (2.54) for the eigenvalues. Lambert (1995) 

empirically derives a single set of initial Oj and tnc values for this iterative process that 

works well for most cases. However, for certain values of sm and $r, we encounter 

problems, suggesting that öJ and rac are jumping to other quadrants of their respective 

tangent and cotangent functions; this phenomenon causes an undesirable convergence 

to previously determined omega values. To correct this problem, we choose seed values 

that are multiples of n: for QJ, and multiples of %/2 for TOC; for the case sT < 1, we set G>I = 

(sT)'1. Then we apply the bisection method to approximate each ©j, TDC, thus obtaining 

initial values for the Newton's method iteration scheme. Extensive testing has 

demonstrated the reliability of this automated eigenvalue routine. 

We next construct a background wind profile using the four free parameters: U(zT), 

Vizi), du and dv (Figure 2.2, Step C). The former two are chosen by the user to control 

the overall speed and turning shear in the profile, while the latter two are the free 

constants in the wind profile equations: 

U(z) = auz+buz
in +cuz

1'3 +du (2.57) 

V(z) = avz+bvz
m + CyZm + dv. (2.58) 

We apply (2.15) and (2.19) to nondimensionalize these profile equations and then require 

the mean background wind profiles to satisfy the same boundary conditions as the 

perturbation wind velocities do. These boundary conditions are 

U\z = 0) - sm ^^ = 0 (2.59) 



18 

£ 

Additionally, we must specify U(z* = 0) and V(z* = 0), which are the same boundary values 

used to calculate the Schramm momentum constant sm. As a result of our 

nondimensionalization definition (2.19), we note that the following condition is also met: 

|VV = 1)| = 1- (2-61) 

Because (2.61) is not a new boundary condition, we are left with six equations and eight 

unknown variables, two of which are the free wind parameters du and dv. Lambert (1995) 

developed an EXCEL spreadsheet to enable users to easily find the values for du and dv 

necessary to give physically realistic background wind profiles. Figure 2.3 shows an 

example of how the wind profile speed changes by altering the values of du and dv. For 

this scenario, we experiment until we arrive at the best possible wind profile for the given 

atmospheric conditions-curve B in Figure 2.3. This plausible boundary layer background 

wind profile corresponds to dv = 4.1 and dv- 1.5 when |V(hLB)| = 4 m/s and |V(zT)| = 8 

m/s. Wind direction profiles, though not shown, are determined concurrently with the 

speed profiles. Before moving from Step C to Step D in Figure 2.2, we must specify a 

plausible inversion strength (°C/m), preferably from an atmospheric sounding. 

A linear stability analysis (Figure 2.2, Step D) is then performed to determine what 

domain shape, specified by Lx and Ly, yields the largest growth rates for a given domain 

depth zr~these are the modes we would expect to observe in the atmosphere 

(Laufersweiler 1987). With the assistance of a contouring software package, we can 

readily identify the fastest growing mode and its corresponding ax and Rvalues, the 

preferred aspect ratios. Before integrating our system of equations, we determine a set of 
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1.0 

0.8 

0.6 

Z* 

0.4 — 

du = 3.1; dv = 0.5 (A) 

du = 4.1; dv=1.5 (B) 

du = 5.1; dv = 2.5 (C) 
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Fig. 2.3. Dimensionless wind speed profiles as determined by the mean background wind parameters, du 

and dv. Note how the wind speed profile changes from A to C as du and dv are incremented by 1.0. We 

find du and dv empirically to attain more physically plausible wind profiles. Here, we choose profile B. 
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initial conditions for the 50-element vector v using the eigenvectors associated with the 

eigenvalues COJ and TDC (Figure 2.2, Step F). If we desire a continuation run, then we use,y- 

vector values from the end of the previous integration. 

Matrix,4 and matrixB (2.55), which represent the temporal-derivative terms and all 

other linear terms, respectively, are determined prior to integrating because they do not 

depend on the spectral coefficients v. In contrast, the nonlinear term matrix C is a linear 

function of v and must be recomputed at each integration time step, at least in theory. 

With efficiency in mind, Lambert (1995) re-expresses the linear function C(y ) using a 

cubic tensor of coefficients (CCUBE, Section 3.2) so that these need not be recomputed 

at each time step. Of course, the same shortcut applies to the coefficient term^CXy) in 

(2.56). We use the IMSL subroutine DLINRG to convert matrix A into A'1, employ 

DMRRRR to determine A'lB, and calculate A'lC directly. 

Earlier versions of the model utilized the IMSL subroutine DIVPAG to perform the 

integration (Figure 2.2, Step G), with acceptable results for short (i.e., less than 32,000 

time step) runs. For longer runs, however, we encountered eigenvalue convergence 

problems and numerical noise, suggesting that another integration scheme is necessary 

(Section 3.2). Since our system of equations is stiff, we adopted the semi-implicit 

integration scheme STIFBS from Press et al (1992). Though not as fast as DrVPAG, 

STTFBS has greatly abated the noise and convergence problems, yielding smooth, 

consistent integrations. 

We allow the model to integrate until the dimensionless energy (yTAy ) quasi- 

equilibrates. After the last integration time step, the model passes the time-dependent 
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amplitude coefficients to a computation/output (CO) subroutine developed by Lambert 

(1995), where the solution is constructed using (2.38)-(2.41). We have enhanced 

Lambert's CO subroutine by offering additional, more automated options. 

In Chapter 4, we offer examples of model solutions generated by the CO subroutine 

for the Hi-Res 2 field experiment. Before doing so, however, we proceed to the next 

chapter where we expound the improvements made to the model since Lambert (1995). 
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Chapter 3 

MODEL IMPROVEMENTS 

At the onset of this study, we had hoped to immediately resume work on the 

interpretation of a SAR image taken during Hi-Res 2, a 1993 MABL field experiment 

conducted off the coast of North Carolina (Lambert 1995; Sikora et al. 1995). However, 

early model runs using Hi-Res 2 observations as input parameters were quite 

discouraging. In addition to very high frequency noise problems in the energy, 

streamfunction and temperature perturbations, we also observed startling dimensionless 

energy growth rates that terminated model runs prematurely. We experimented with 

altered initial conditions and subroutines to limit numerical roundoff errors with little or no 

effect, convincing us that further model improvements and debugging were necessary. We 

also were compelled to address previously unexplained numerical issues related to our 

NDS.   Therefore, before pursuing the Hi-Res 2 case study further, we had to address 

model limitations and make corrections and modifications as necessary. 

Preliminary troubleshooting revealed that the immense growth rates were due to the 

terms represented by the linear buoyancy matrix, and that the noise problem was generated 

by several sources, two of which were 1) the integration of stiff equations with a non-stiff 

numerical integration routine (Press et al 1992), and 2) the nonlinear cubic tensor arising 

from the advection of vorticity (Section 2.4). Since this growth rate problem generally 

caused the computer code to crash, we decided to focus on the linear portion of the model 

first. 
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3.1. Addressing Monotonie Energy Growth 

While constructing the model, Zuccarello (1994) built all the linear matrices 

analytically using the DERIVE software package. After completing his 1995 case study, 

Lambert did likewise when he constructed the inversion subroutine, the terms of which he 

merely added to those representing the neutral boundary layer (i.e., Ra = -1), as shown in 

the equation 

*£ = -Ra + ?f. (3.1) 
CZ cz 

In order to perform a completely independent cross-check of the linear buoyancy matrix, 

we began with the spectral representations for 0 *, y? and rf (2.39)-(2.41), encoded our 

own functions and integrated the results numerically. Since the trigonometric functions 

(2.42)-(2.46) are independent of z, and the basis functions (2.47)-(2.52) are independent 

of x and y, we were able to compute the x, y, z* triple integral as a product of a double 

integral in JC*, y and a single integral in z. We used the IMSL subroutine DTWODQ for 

the double integral and DQDAG for the single one. 

The analytic and numeric approaches to calculating the inversion were nearly identical, 

indicating that the inversion subroutine had been coded correctly. However, a closer 

examination of the analytically derived neutral boundary layer revealed unexplained errors. 

In the interest of time, we chose to incorporate the numerical subroutine into the model 

rather than to reformulate the analytic equations. This decision had the added benefit of 

making future modifications of the temperature profile more easy to implement. 

After fully incorporating the numerically determined temperature profile, however, we 

found that the introduction of an inversion still tended to increase the overall energy of the 
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system, even with very weak inversions. The culprit appeared to be the dimensionless 

inversion lapse rate term 

# = (§X^^), 0.2) 

whose immense magnitude (of order 106) dominated all other terms in the NDS, especially 

those of the background temperature modification 0OJ (2.39). Adding an inversion to a 

thermally neutral boundary layer (of order unity) tended to throw the model solution out 

of balance, yielding colossal growth rates in the dimensionless energy. 

Hoping to counteract this aphysical growth and yield more balanced solutions, we 

introduced an unstable surface layer that spreads the air-sea temperature difference over a 

user-specified surface layer depth (Laufersweiler and Shirer 1995); this yields a lapse rate 

term of similar magnitude to (3.2). The new potential temperature profile is similar to the 

one depicted in Figure 3.1, although the depth of the unstable surface layer has been 

exaggerated somewhat. The three lapse rates are, by definition, negative in the surface 

layer, slightly positive in the boundary layer and positive in the inversion layer. 

Quantitatively, the dimensional potential temperature lapse rates can be represented by the 

following equations: 

3       (*a.-*ka) 
{hLB<Z<ZSL} (3.3) 

^k = _^L     {zsL<z<Zi} (3.4) 

'm _    "/AT1- 

&      (zT-z() 
{z4<z<zT}, (3.5) 



25 

THERMAL BASE STATE 

DOMAIN HEIGHT 

o 
LU 

"SL 

h LB 

INVERSION LAYER (IN) 

INVERSION BASE HEIGHT 

NEARLY NEUTRAL 
BOUNDARY LAYER (BL) 

SURFACE LAYER HEIGHT 

SURFACE 
LAYER (SL) 

ANEMOMETER HEIGHT 

POTENTIAL TEMPERATURE 

Figure 3.1. A schematic of the background potential temperature profile used in the model. 
(Not drawn to scale.) 
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where ZSL is the top of the unstable surface layer and An$ is the change in potential 

temperature over the specified layer, n. All other variables are as defined in Chapter 2. 

This addition to the model did increase the magnitude of the other buoyancy terms as 

desired but did not completely balance the model solutions as we had hoped-there was 

still evidence of monotonic energy growth in several instances. We therefore added a 

nonlinear numerical dissipation term to bound the energy growth, without altering the 

linear growth rates or the preferred aspect ratios. Equation (2.56) now takes the form: 

y = A-1By + A-lC(y)y-d\y\y, (3.6) 

where d is an empirically determined dissipation coefficient; we use d= 0.1 for our study. 

Model runs with an inversion and surface layer now provide more stable, physically 

plausible results. 

3.2. Addressing Numerical Noise 

Isolating the source of numerical noise in the nonlinear terms proved to be less 

straightforward because the problem did not occur all the time. Model output showing 

the emergence of noise was extremely dependent on initial conditions, leading us to 

consider the possibility that the solution was chaotic (Lorenz 1993). As it turned out, 

such was not the case. 

In the computer model (Section 2.4), there is a 50 X 50 X 50 matrix, CCUBE, that is 

used to calculate the C(y)y term in (2.56). This cubic matrix holds the constant 

coefficients for the nonlinear temperature and streamfunction advective terms. Numerous 

diagnostic tests revealed that several CCUBE assignment statements contained indexing 

errors that manifested themselves as noise in the model solution. After Drs. Hampton 

Shirer and Robert Wells tediously re-indexed the CCUBE matrix, we noted vast 
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improvements in the model solution: the nonlinear terms became energy preserving as 

they should and numerical noise was minimized, occurring less frequently. However, 

these changes did not totally eradicate numerical noise from the model output as we 

would have liked, for during longer integrations when surface winds were light, noise 

continued to dominate the solution. The installation of a time filter reduced the amplitude 

of the fluctuations somewhat but did not remove the higher-frequency oscillations. 

As noted in Chapter 2, we encountered eigenvalue convergence problems while using 

the integration subroutine DIVPAG. This experience alerted us to the possibility that the 

venerable IMSL subroutine might be the source of the numerical noise we were observing. 

Due to the gracious assistance of Prof. John Lopez of the Mathematics Department, 

Pennsylvania State University, we found that DIVPAG was not designed to handle a NDS 

of the type used by our model; nor was it reliable in working with stiff systems of 

equations, which are systems "where there are two or more very different scales of the 

independent variable on which the dependent variables are changing" (Press et al. 1992). 

We therefore implemented the Numerical Recipes semi-implicit integration subroutine 

STUBS (Press et al. 1992), and we were pleased that model integrations became 

smoother and more consistent, not suffering eigenvalue convergence woes. 

To attain the superior quality solutions afforded by STIFBS, however, there was a 

significant tradeoff in time. The new integration subroutine is considerably slower than 

DIVPAG (nearly five times slower for some cases) and this sluggishness hindered research 

progress. To alleviate this, we implemented a scheme to rescale the potential temperature 

perturbation terms so they more closely matched the magnitude of the vorticity terms. 

This improved the balance of our NDS solutions by reducing the number of iterations 

required at each integration time step, thereby increasing the overall speed of model runs 

without affecting the linear stability results. To incorporate this time-saving routine, we 

redefined a new potential temperature perturbation: 
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&{new)-Sfd{old)> V3-7) 

where sf is the scale factor coefficient. Instead of tediously multiplying every individual 

matrix in the thermodynamic equation by Sf, we simply multiplied the first twenty elements 

of the vector v (the potential temperature elements) by sf. To then balance the equations, 

we only had to multiply the buoyancy matrix D in the thermodynamic equation by 5/and 

the buoyancy matrix G in the vorticity equation by (sfi1. After integrating with these 

alterations, we rescale all terms to their original size to construct the model solution. To 

our pleasure, the quality integrations given by STIFBS can now be achieved in about half 

the time. 

We are now ready to use the model to study very large eddy circulations of the 

MABL. In Chapter 4, we resume work on the Hi-Res 2 case study. 
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Chapter 4 

CASE STUDY 

Since several significant alterations have been made to the model since its last major 

evaluation (Lambert 1995), we now ascertain whether the model solutions adequately 

represent observed atmospheric phenomena. To do so, we compare and contrast our 

numerical results with observations and synthetic aperture radar (SAR) imagery taken 

during the Hi-Res 2 field study, which is described in great detail by Sikora et al. (1995) 

and Lambert (1995). 

We perform the sequence of steps outlined in Figure 2.2 and Section 2.4 to arrive at a 

numerical solution for the case under investigation. When trying to capture via a linear 

analysis the observed aspect ratios for an atmospheric (as opposed to idealized) case, we 

may use the "NO" loop in Figure 2.2 many times to re-select free wind parameters and/or 

the inversion strength. We iterate through this loop until both of the preferred aspect 

ratios ax and ay match the observed ones within + 0.1 (which amounts roughly to a 10 

percent error), the specified error of the SAR image spectral analysis for Hi-Res 2 (Shirer 

et al. 1997). After a successful linear analysis, we determine the parameter values of the 

model using Hi-Res 2 surface data, then perform and analyze nonlinear integrations using 

several different scale factor values sy-in (3.7). This has the effect of changing the impact 

of the nonlinear dissipation during the integration without altering the linear results; 

however, the effect on the model solution is substantial, as we demonstrate in Section 4.2. 

We begin in Section 4.1 by briefly describing Hi-Res 2 observations. 
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4.1. Overview of Hi-Res 2 Field Experiment and Data 

The observational data used for this case study are from the Hi-Res 2 field experiment 

conducted in June 1993 off the coast of North Carolina, and they are reported by Sikora et 

al. (1995) and Lambert (1995). From 16 -18 June 1993, two ships, the R/Vs Columbus 

Iselin and Bartlett, took observations at the sea surface and at z = 10 m within the region 

35.2° - 36.6° N latitude and 73.8° - 75.0° W longitude. On 17 June 1993, the Hi-Res 2 

MABL measurement region coincided with that imaged by the SAR on the European 

Remote Sensing Satellite (ERS-1). For this case study, we choose a composite image that 

was taken at 1538Z and was published by Sikora et al. (Figure 1, 1995). 

According to Sikora et al. (1995), there are two distinct patterns present on the 17 

June 1993 SAR image: a marbled pattern in the northwest portion and a mottled pattern 

throughout the southeast portion. The transition between these two regions occurs at the 

Gulf Stream North Wall (GSNW). The marbled region north of the GSNW is the SAR 

signature of a stable MABL, while the mottled region south of the GSNW is the signature 

of a thermally unstable MABL. Because we wish to study secondary circulations of the 

MABL induced by thermal and/or inflection point instabilities, we focus our study on the 

mottled region of the SAR image, specifically in the vicinity of 35.8° N, 74.2° W, where 

there are discernible kilometer-scale alternating dark/light patterns. About the time the 

SAR image was taken, the R/V Columbus Iselin was in the area and recorded surface 

observations that are summarized in Table 3.1 of Lambert (1995). As depicted by Table 

4.1, we regroup the 17 June 1993 data into two sets, Sonde 1 and Sonde 2, based upon 

the times in which the ship was near the location of each launch. Sonde 1, which was 

launched at 1517Z, represents the time-averaged data from 1437Z - 1602Z, while Sonde 

2, which was launched at 1955Z, represents the time average from 1941Z - 2241Z. 

Unfortunately, boundary layer sounding winds were unavailable for either data set; 

however R/V Columbus Iselin researchers reported that winds were relatively light 
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throughout the boundary layer. Here, we use the Sonde 1 case for our study because it 

was closer to the time of the SAR image, and we propose that future work include an 

analysis of the Sonde 2 case. 

The surface analysis shown in Figure 2 of Sikora et al. (1995) depicts the synoptic 

conditions at 1500Z on 17 June 1993. Aside from a mesofront near the GSNW (noted by 

the crew of the R/V Columbus Iseliri), the meteorological conditions in the region of 

interest were relatively quiescent: only light winds and boundary layer cumulus were 

reported. This lack of appreciable synoptic-scale features suggests that boundary layer 

convective eddies (BLCE) were responsible for the stress patterns observed on the 1538Z 

SAR image in the region of interest for this study (Sikora et al. 1995). 

The current-relative winds at 10 m for the Sonde 1 case were 0.93 m/s from 319° and 

the air-sea temperature difference was -2.9 °C (i.e., sea warmer than air). When plotted 

on a Woodcock (1975) diagram (Point A, Figure 4.1), the data fall into the three- 

dimensional regime. We therefore expect our model solution for this particular case to be 

cellular. 

4.2. Case Study Analysis 

We begin our investigation by determining the values of the lower boundary Schramm 

forcing parameters, sT and sm (Figure 2.2, Step B) for the Sonde 1 data. Using the 

subroutine described in Appendix A of Zuccarello (1994), we input the physical parameter 

values from Table 4.1 to obtain sT = 1.95 and sm = 0.67. 

We then conduct an eigensystem linear analysis to determine the preferred values of 

the aspect ratios, which yield the shape of the horizontal domain by (2.26) and (2.27). For 

the given input parameter values, we iterate through a range of relevant ax and ay values, 
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Figure 4.1. The Woodcock (1975) diagram predicts secondary circulation regimes from the current- 
relative wind speed at 10 m (z* = 0) and the air/sea temperature difference. Point A represents 
the input observations from the Hi-Res 2 case study (Sonde 1). 
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then contour the real parts of the 50th eigenvalue (because the eigenvalues are sorted in 

ascending order by the value of their real parts). The aspect ratio region in which the 

largest positive real parts (or growth rates) are observed determines the preferred aspect 

ratios (Laufersweiler 1987). While invoking the "NO" loop in Figure 2.2, we adjust the 

free wind parameter values, inversion strength and/or surface layer depth, and re-iterate 

through the appropriate ax and ay values until we approach the values of the observed 

aspect ratios. We found during our study that this may not be possible for all cases in a 

reasonable amount of time. Fortunately for this present study, after increasing Am0 from 

0.4 °C (Table 4.1) to 1.8 °C, we were able to obtain acceptable aspect ratio values; the 

linear stability analysis plot in Figure 4.2 yields preferred aspect ratios, ax and ay, that are 

equal to 0.7 and 0.8, respectively. Shirer et a/.(1997) conducted a spectral analysis of the 

1538Z SAR image and found ax = 0.7 + 0.1 and ay = 0.9 + 0.1, as reported in Table 4.1. 

Because our findings are within the error tolerances of the spectral analysis, we may 

conclude that our NDS is capable of capturing the preferred horizontal wavelengths of the 

convective structures that are depicted on the 1538Z SAR image. 

Table 4.2 summarizes all input parameter values used for this Hi-Res 2 case study. 

Note that Re is calculated from (2.28) instead of being chosen directly, and that the 

Coriolis parameter/equals zero because we expect the BLCE solutions to have time 

scales on the order of an hour or less (Lambert 1995). Additionally, we specify only one 

wavenumber in each of the x- and ^-directions in the model, enabling us to set / = 1 and 

m=l in(2.43)-(2.46). 

After initializing the model, we integrate until we attain a state of quasi-equilibration. 

We observe this readily by plotting the dimensionless energy (y7Ay) of the time- 

dependent amplitude coefficients, which follows from (2.55). 



35 

DETERMINATION OF THE 
PREFERRED ASPECT RATIO 

a X 

Figure 4.2. Contour plot of the real part of the 50th eigenvalue from the linear stability analysis from 
Sonde 1 data. The maximum dimensionless growth rate indicates the preferred aspect ratios 
(0.7,0.8). The associated model parameter values are given in Table 4.2. 



Table 4.2. Parameter values used in case study at point A on Figure 4.1. 36 

PARAMETER VALUE 

HEIGHT OF TOP OF DOMAIN (zT) 609 m 

HEIGHT OF BOTTOM OF DOMAIN (hw) 10 m 

HEIGHT OF INVERSION (z.) 409 m 

HEIGHT OF SURFACE LAYER (zSL) 20 m 

ASPECT RATIO IN THE X-DIRECTION (ax) 0.7 

ASPECT RATIO IN THE Y-DIRECTION (ay) 0.8 

REYNOLDS NUMBER (Re) 359.4 

MEAN WIND SPEED / DIRECTION AT z = zT 6.0 msl 1300° 

MEAN WIND SPEED / DIRECTION AT z = hw 0.93 ms1/ 319° 

U MEAN WIND PROFILE PARAMETER (dv) 2.5 

V MEAN WIND PROFILE PARAMETER (dv) -3.0 

ACCELERATION OF GRAVITY (x) 9.8 ms2 

CORIOLIS PARAMETER (f) 0 s1 

EDDY VISCOSITY (v) 1 m2sl 

EDDY CONDUCTIVITY {K) 10 m2sl 

PRANDTL NUMBER (P) 0.1 

SEA SURFACE TEMPERATURE (T00) 27.8 °C 

TEMPERATURE AT z = hm (Tw) 24.9 °C 

MLXING RATIO AT SEA SURFACE 22.3 gkgl 

MLXING RATIO klz = hw 13.6^^ 

RAYLEIGH NUMBER (Ra) -1 

SCHRAMM VELOCITY CONSTANT (sm) 0.67 

SCHRAMM THERMAL CONSTANT (sT) 1.95 
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As noted in Section 3.1, we empirically chose the value of the numerical nonlinear 

dissipation coefficient d to be 0.1; it remains fixed~as do the parameters in Table 4.2--for 

the two Sonde 1 cases presented here. What we do alter, however, is the value of the 

scale factor 5/from (3.7), which was initially implemented to expedite the integration 

process in a way that has absolutely no impact on the linear analysis, nor in principle, on 

the nonlinear advection terms. However, changing the value of sf (and nothing else) does 

alter the weight of the nonlinear dissipation in the integration to yield rather interesting 

results. Table 4.3 shows the two Sonde 1 cases that we integrated with the scale factor 

and run time shown. 

Table 4.3. Two Sonde 1 cases determined by scale factor value. 

Case d Sf Length of Integration 

1 0.1 10"3 175,000 s 

2 0.1 io-2 150,000 s 

We arrived at these values after experimenting with lvalues in the range of 0 to 10, 

and Sf values in the range of 10"4 to 1. For the case with no dissipation (d =0,s/=l), the 

dimensionless energy began to blow up at 175,000 s; in contrast, cases with strong 

numerical dissipation displayed extremely long, periodic oscillations with no sign of quasi- 

equilibration within reasonable periods of time. For each order of magnitude decrease in Sf 

(e.g., 1 to 10"1), we realized an approximate 10 percent decrease in integration time. The 

selections of d and sf values shown in Table 4.3 represent what we found to be the best 

combinations for speed and run quality. 

The dimensionless energy is plotted for Case 1 and Case 2 in Figures 4.3 and 4.4, 

respectively. Case 2 reaches a state of quasi-equilibration around the dimensionless 

energy value 7.4 x 1010, and so we stopped the run at 150,000 s (approximately 42 hours). 
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DIMENSIONLESS ENERGY 
(CASE 1) 
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Figure 4.3. Case 1 time series plot of the dimensionless energy for the 50 time-dependent amplitude 
coefficients. The system is quasi-equilibrated. 
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DIMENSIONLESS ENERGY 
(CASE 2) 
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Figure 4.4. Case 2 time series plot of the dimensionless energy for the 50 time-dependent amplitude 
coefficients. The system is quasi-equilibrated. 
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In contrast, Case 1 appears to be settling near a value of 9.6 x 1010 by 150,000 s. 

Although the oscillation amplitude increases in magnitude between 150,000 s and 175,000 

s, the mean energy is still less than 1.0 x 10n. We integrate Case 1 further to 200,000 s to 

confirm that the oscillations do not continue to intensify without bound, and as Figure 4.3 

shows, they apparently do not. They initially increase in magnitude, then decrease, with 

oscillations centered about 1.1 x 10n. We choose 175,000 s as the case study termination 

point, however, because the model solution appears to stabilize by then, with minimal 

transient activity. Time series plots of the potential temperature amplitude coefficients 0U 

for each case (Figure 4.5 for Case 1; Figure 4.6 for Case 2) show regular periodic 

oscillations, indicating that our choices for run termination times are appropriate. Note 

that Case 1 and Case 2 have dominant solution periods of 15 minutes and 67 minutes, 

respectively, which are consistent with the findings of Shirer (1986), Pyle (1987), and 

Haack and Shirer (1992) for BLCE. 

Because the ultimate goal of this project is to study the impact that MABL secondary 

circulations have on the sea surface stress patterns as observed by SAR, we calculate the 

stress at the lower boundary of the model domain using the following equation: 

Tr = CdPo[(UhiB+urfHVh„+vr
2j\. (4.1) 

Here, Uh   and Vh   are the horizontal components of the mean background wind at the 

lower boundary; ur and vr are the horizontal components of the wind due to the roll or 

cell at the lower boundary hw; p0 is the density from (2.2) with a typical value of 1 kg/m3; 

and Cd is the coefficient of drag, with a typical value of 1/900 (Stull 1988). The 

computational output (CO) subroutine of the model also calculates the stress induced 

strictly by ur and vr to display the contribution from the rolls or cells independent of the 

mean wind contribution. For the stress plots presented in this study, we chose to include 
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POTENTIAL TEMPERATURE AMPLITUDE 
COEFFICIENT (CASE 1) 

300000 
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[TIME (s) x 10] + 160,000 (s) 

2400 

Figure 4.5. Time series (last 15,000 s) of one of the time-dependent potential temperature amplitude 
coefficients (^n) for Case 1, demonstrating that the solution has a dominant period of 

approximately 15 minutes. 
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POTENTIAL TEMPERATURE AMPLITUDE 
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Figure 4.6. Time series (last 20,000 s) of one of the time-dependent potential temperature amplitude 
coefficients (0n) for Case 2, demonstrating that the solution has a dominant period of 

approximately 67 minutes. 
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the contribution of the background wind, as that would apply better to the atmospheric 

case. 

A salient application of stress planviews is the determination of the structural type of 

BLCE regime under investigation, whether quasi-two-dimensional with rolls, fully three- 

dimensional with cells, or somewhere in between. While we are primarily concerned with 

the regime of the final stabilized solution for each case, we are also interested in observing 

the pattern evolution between regimes. To do so, we occasionally extract data during the 

course of the integrations and pass it through the CO subroutine. On the dimensionless 

energy time series plots (Figures 4.3 and 4.4), we have identified the points at which data 

were extracted-A through E for Case 1, and W through Z for Case 2~and we have 

summarized the results in Table 4.4. As we illustrate below, note that in Case 1 the model 

Table 4.4. Summary of structure types at the points depicted on the energy plots (Figures 4.3 and 4.4) 
for Case 1 and Case 2. The type is determined from the surface stress patterns. 

CASE TIME STEP (s) POINT STRUCTURE ENERGY LEVEL 
1 25,000 A Rolls 1.41 xlO11 

1 75,000 B Transition 1.59 xlO11 

1 100,000 C Cells 1.48 xlO11 

1 150,000 D Cells 9.58 xlO10 

1 175,000 E Cells 1.11 xlO11 

2 75,000 W Rolls 7.65 x 1010 

2 100,000 X Rolls 6.75 x 1010 

2 125,000 Y Rolls 6.86 xlO10 

2 150,000 Z Rolls 7.44 x 1010 

solution starts as quasi-two-dimensional, passes through a transitional phase and then 

becomes fully three-dimensional. Case 2, in contrast, is strictly quasi-two-dimensional 

throughout the length of the integration, with no indications of changing. Remarkably, 

both cases were run from the same initial conditions. Because the magnitude of the 
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dimensionless energy is much greater overall in Case 1, we speculate that the transition 

from quasi-two-dimensional to three-dimensional patterns requires higher levels of 

energy—energy that is reduced in Case 2 by using a larger value of Sf, which serves to 

strengthen the nonlinear dissipation. A majority of the preliminary runs we performed 

produced energy signatures like that depicted in Case 1 and yielded three-dimensional 

solutions after quasi-equilibration had occurred. We therefore postulate that higher 

energy levels are a necessary (but not sufficient) condition for a regime to transition from 

a quasi-two- to three-dimensional pattern. Owing to time limitations, we were unable to 

explore this hypothesis further but suggest that future studies address it. 

The plot of stress magnitudes at the lower boundary for Case 1 (at Point E, Figure 

4.3) is shown in Figure 4.7. Higher stress regions are depicted by lighter shading to match 

the brightness of the high-stress regions on a SAR image, and we are gratified that the 

magnitudes of the dimensional stress, with orders of magnitude of 10"2 Nm'2, are 

consistent with those found by Alpers and Brummer (1994) (although their 10m winds 

were more intense). As previously noted, the Case 1 stress pattern clearly exhibits a fully 

three-dimensional flow field whose structure is oriented nearly perpendicular to the 

direction of the mean background wind at the lower boundary. We contrast this result 

with that in Figure 4.8, which shows the surface stress for Case 1 at 100,000 s (Point C, 

Figure 4.3). Here the orientation is aligned 14° to the right of the background wind, 

which is well within the range of typically observed values of-20° to +30° (Etling and 

Brown 1993). This orientation also more closely matches the pattern depicted by the 

1538Z SAR image shown in Sikora et al (1995) as well as Lambert's (1995) findings. 

From a modeling standpoint, discovering that cells can become oriented normal to the 

background wind is a success; this is the first case in which we observed such behavior, 

assuring us that the orientation is not locked to the direction of the mean wind as a result 

of a modeling assumption. From a meteorological perspective, however, we felt initial 

disappointment because we had not captured the same cell orientation as the SAR image 
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STRESS AT LOWER BOUNDARY 
(CASE 1, POINTE) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 

Figure 4.7. Planview of stress magnitudes at z* = 0 imposed by the background wind and secondary 
circulations (cells), as predicted in Figure 4.1. Consistent with SAR imagery, regions of higher 
stress are shaded lightly and regions of lower stress are shaded heavily. The domain shape 
(x7y") is chosen to agree with the ratio ajax =1.15, and Xr* and Yr* represent the rotated cell 
coordinate system. The along-mean wind axis Xr* is perpendicular to the cross-mean axis Yr* 
but does not appear as such due to the domain shape (x7y*) scaling. The contour interval is 
5 x 10"4 Nm'2, and the + sign denotes the point at which profiles are calculated. 
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STRESS AT LOWER BOUNDARY 
(CASE 1, POINT C) 
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Figure 4.8. Planview of stress magnitudes at z* = 0 imposed by the background wind and secondary 
circulations (cells), as predicted by Figure 4.1. Consistent with SAR imagery, regions of high 
stress are shaded lightly and regions of lower stress are shaded heavily. The domain shape 
(x7y") is chosen to agree with the ratio ajax =1.15, and the contour interval is the same as that 
used in Figure 4.7. 
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at the same time that model transients had settled down.   However, a SAR image records 

an instant in time, not an evolution, and it is quite possible that a change occurred in the 

orientation of the sea surface stress pattern after the 1538Z SAR image was taken. Of 

course we cannot prove such an assertion here, but we note that having the secondary 

circulation aligned normal to the direction of the mean wind is not without precedent for 

an inflection point mode BLCE (e.g., Brown 1980). Later, we will show that the Case 2 

modified (post-cell) wind speed profile contains two points of inflection, consistent with 

our findings here. 

In this study, we do not focus on the transition from quasi-two- to three-dimensional 

regimes; however, we include in Figure 4.9 the stress pattern plot for Point B of Figure 

4.3, which illustrates the transitional phase stress pattern for Case 1. Note that while the 

quasi-two-dimensional roll structure is still quite prominent, there is evidence of cellular 

activity. 

The stress pattern for Case 2 (Point Z, Figure 4.4) is depicted in Figure 4.10 and is 

quasi-two-dimensional, indicating that rolls are dominant in the model solution. There is a 

hint of three-dimensionality in the stress pattern (small cellular structures along the 

diagonal), but it is negligible; the phenomenon may be due to limitations of the contouring 

software in handling the very small variations along the SE-NW diagonal, or simply that 

the gridding used was too coarse. The rolls for this case are closely aligned with the 

direction of the mean background wind and remain fixed in orientation throughout the 

length of the run, indicating a more robust model solution. Based upon the extensive 

work done by Woodcock (1940, 1975) and Deardorff (1976), we recall from Figure 4.1 

that the atmospheric parameter values used (Table 4.1) should yield a three-dimensional 

cellular solution. Accordingly, we attribute the quasi-two-dimensionality observed in Case 

2 strictly to numerics~the larger 5/value simply altered dissipation sufficiently to cause the 

model solution to seek a different, lower energy attractor, a quasi-two-dimensional one. 
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STRESS AT LOWER BOUNDARY 
(CASE 1, POINT B) 
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Figure 4.9. Planview of stress magnitudes at z* = 0 imposed by the background wind and secondary 
circulations in transition between rolls and cells. Consistent with SAR imagery, regions of high 
stress are shaded lightly and regions of lower stress are shaded heavily. The domain shape 
(x"/y*) is chosen to agree with the ratio a,Jax = 1.15, and the contour interval is the same as that 
used in Figure 4.7. 



49 

STRESS AT LOWER BOUNDARY 
(CASE 2, POINT Z) 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 4.10. Planview of stress magnitudes at z* = 0 imposed by the background wind and secondary 
circulations (rolls). Consistent with SAR imagery, regions of high stress are shaded lightly and 
regions of lower stress are shaded heavily. The domain shape (x7y") is chosen to agree with the 
ratio ciyjax = 1.15, and Xr* and Yr* represent the rotated roll coordinate system as in Figure 4.7. 
The contour interval is also the same as that used in Figure 4.7, and the + sign denotes the point 
at which profiles are calculated. 
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We therefore postulate that Case 1 is more physically plausible than Case 2 with the 

atmospheric input variables used. Nevertheless, we will compare and contrast both cases 

to further evaluate model capabilities and limitations. 

Because the cellular structures in Case 1 are aligned nearly normal to the direction of 

the background mean wind (Figure 4.7) and because the rolls in Case 2 are nearly parallel 

to the mean wind, we expect the dominant solution period to be smaller for Case 1. 

Agreeably, it is, as we determined from the time series plots for 0U (Figures 4.5 and 4.6); 

the Case 1 period is 15 minutes while the Case 2 period is 67 minutes. 

On Figures 4.7 and 4.9 we have drawn new, rotated axes, Xr* and Yr*, along which 

we take cross sections of the domain to contour values of the streamfunctions, vertical 

velocity and potential temperature. These rotated axes are determined differently from the 

x * and y* axes used in Lambert (1995). Here, Xr* and Yr* represent the cross- and 

along-mean wind axes, and they are perpendicular to one another. On the stress 

planviews, however, they do not appear as such due to domain shape scaling. The rotated 

axes are given by 

Xr* = x"-y (4.2) 

Yr* = x*+y, (4.3) 

and the rotated streamfunctions are specified by 

tfr = yf-rf. (4.5) 
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Note that we only illustrate physically relevant streamfunction components in our cross 

sections; that is, rf is contoured only along the Xr* axis as 7*, and y? is contoured only 

along the Yr* axis as \j/\. For Case 1, Xr* runs along the orientation of the cells and Yr* 

runs across the cells. For Case 2, Xr* and Yr* are the cross- and along-roll axes, 

respectively. 

We begin by contouring values of the streamfunctions for both cases (Figures 4.11 and 

4.12) to ensure dimensional consistency with the stress plots and to determine the vertical 

extent of the secondary circulations. A cursory glance at the flows shown for Case 1 

(Figure 4.11) clearly suggests a fully three-dimensional structure because flows are evident 

in both cross sections-this is what we expected from Figure 4.7. Similarly, the quasi-two- 

dimensional structure displayed by the stress pattern in Figure 4.10 for Case 2 clearly 

coincides with the flows visualized in Figure 4.12, for there are only circulations present 

along the Xr* axis, the cross-roll axis in this case. Overall, the circulations are stronger in 

Case 1 than in Case 2. 

We had hoped that the addition of an inversion (at z* = 0.7) would cap the circulations 

as it did for Laufersweiler and Shirer (1995). From Figures 4.11 and 4.12, we can see that 

it appears to be doing so for both cases, with only slight anomalies. For Case 1 (Figure 

4.11), the along-Xr* axis plot shows circulations capped almost perfectly by the inversion 

with very weak, and certainly acceptable, perturbations above the inversion base at z = 

0.7. Along the Yr* section, the circulations penetrate into the inversion, though the 

relative weakness of y/*r above z* is comforting. Given the relatively small inversion 

strength (1.8 °C/200m), this too seems physically acceptable. Similarly, the Case 2 flow 

shown along the Xr* axis in Figure 4.12 is quite reasonable with a well-defined circulation 

belowz* and only negligible perturbations into the inversion. Overall, these cross sections 

are encouraging and illustrate that the model is capable of adequately capping weak to 

moderate flows with an inversion. 
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STREAMFUNCTION 
CROSS SECTIONS 

(CASE 1) 

Yr* 

Figure 4.11. Cross sections of contoured streamfunctions using rotated horizontal axes from Figure 4.7: 
* * 

(Top) 7   is contoured along the Xr* axis, and (Bottom) y/   is contoured along the Yr* axis. 

Shaded regions represent negative values while lighter regions represent positive values. The 
contour interval is consistent in the top and bottom cross sections, as well as with Figure 4.12. 
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Figure 4.12. Cross sections of contoured streamfunctions using rotated horizontal axes from Figure 4.9: 

(Top) 7]   is contoured along the Xr* axis, and (Bottom) i//   is contoured along the Yr* axis. 

Shaded regions represent negative values while lighter regions represent positive values. The 
contour interval is consistent in the top and bottom cross sections, as well as with Figure 4.11. 
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Figures 4.13 and 4.14 display cross sections of vertical velocities for Cases 1 and 2, 

respectively. One notable feature in both cases is the presence of vertical velocity maxima 

at approximately 0.3 of the depth of the boundary layer {z « 0.2), which is consistent 

with convective boundary layer observations (e.g., Lenschow et al. 1980) and other more 

complex model simulations (e.g., large eddy simulation [LES], Schmidt and Schümann 

[1989]). In the Yr* cross section of Case 1 (Figure 4.13) and both cuts from Case 2 

(Figure 4.14), the vertical velocity contours are contained below the base of the inversion 

at zt = 0.7, with the exception of very minor perturbations. The Xr* cross section of Case 

1, however, appears as an anomaly with a wavenumber-three signature and the maximum 

updraft just below zt. We attribute this pattern to the location of the Xr* axis in Figure 

4.7, which cuts through a complicated three-dimensional pattern between the high- and 

low-stress regions, and encounters a plethora of small-scale contour variations. Had we 

taken a different cross section, we would expect cleaner results. We are quite pleased 

with the Xr* cross section of Case 2, for it clearly captures the observed phenomenon of 

narrow updrafts and broad downdrafts. We are somewhat perplexed by the Yr* section of 

Case 2, however, since the existence of updrafts in this cross sections suggests a three- 

dimensional flow; yet all other indicators point to a quasi-two-dimensional regime. We 

defer speculation until the solution is visualized in three dimensions. 

We turn now to vertical velocity profiles for a snapshot look at the variation of w with 

z at a fixed horizontal point (x* = 0.8, v* = 0.5), denoted on Figures 4.7 and 4.10. A Case 

1 profile drawn in Figure 4.15 depicts a maximum updraft just above z* = 0.2 (consistent 

with the cross section results), a downdraft just above z* = 0.5 and a secondary, weaker 

updraft in the inversion layer. We believe the two former attributes accurately represent 

the physics of the boundary layer, while the latter attribute shows evidence of a very slight 

circulation within the inversion layer, consistent with the streamfunction and vertical 

velocity perturbations noted in Figures 4.11 and 4.13, respectively. The Case 2 vertical 

velocity profile is shown in Figure 4.16 and represents a nearly ideal profile, for there is 
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Figure 4.13. Cross sections of contoured vertical velocity fields using rotated horizontal axes from Figure 
4.7: (Top) w* is contoured along theXr* axis, and (Bottom) w* is contoured along the Yr* axis. 
Shaded regions represent negative values (downdrafts) while lighter regions represent positive 
values (updrafts). The contour interval is consistent in the top and bottom cross sections, as well 
as with Figure 4.14. 
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Figure 4.14. Cross sections of contoured vertical velocity fields using rotated horizontal axes from Figure 
4.9: (Top) w' is contoured along the .Yr* axis, and (Bottom) w* is contoured along the Yr* axis. 
Shaded regions represent negative values (downdrafts) while lighter regions represent positive 
values (updrafts). The contour interval is consistent in the top and bottom cross sections, as well 
as with Figure 4.13. 
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Figure 4.15. Profile of the Case 1 vertical velocity {m/s) at (x* y*) = (0.8, 0.5), denoted by + in Figure 
4.7. 
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Figure 4.16. Profile of the Case 2 vertical velocity (m/s) at (x* y*) = (0.8,0.5), denoted by + in Figure 
4.10. 
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only one maximum in the vertical column at approximately 0.3 times the depth of the 

boundary layer. Additionally, w becomes negligible just below the base of the inversion 

and remains small throughout the inversion layer. We are also encouraged that the 

magnitudes of w found for both cases are acceptable for BLCE (Etling and Brown 1993). 

We now examine the potential temperature perturbation cross sections shown in 

Figures 4.17 and 4.18 for Cases 1 and 2, respectively. A cursory glance reveals that the 

model has difficulty resolving temperature in these cross sectional views. However, there 

are three noteworthy phenomena captured by the model: 1) The region where the greatest 

temperature perturbations occur is at the lower boundary, indicating that our boundary 

conditions have captured the physics of a warm ocean below a cooler MABL, as Schmidt 

and Schümann (1989) found with LES. 2) There is a clear demarcation in potential 

temperature between the boundary layer and the inversion layer, and we take comfort that 

the line whered0*\dz = 0 is in close proximity to z* = 0.7. 3) The dimensional values of 

the potential temperature perturbations range from order 0.1 K to 1.0 K; the lower value is 

in accordance with the results of Haack and Shirer (1992). 

The wavenumber 3 and 4 patterns observed have only a minor effect on the vertical 

transport of thermal energy in the model (Figures 4.19 and 4.20). These convincing 

dimensionless heat flux profiles reveal small negative heat fluxes in the inversion layer, as 

is typically observed. Both figures also show maximum fluxes near the bottom of the 

domain, which is to be expected when there is heating from below. The magnitudes of the 

heat fluxes are of order \0'1 Kms' for Case 1, and order IV2 Kms1 for Case 2; the smaller 

values obtained in Case 2 are consistent with the findings of Laufersweiler and Shirer 

(1995), who also studied a quasi-two-dimensional case. The Case 2 heat flux profile 

(Figure 4.20) is especially encouraging, for it decreases nearly linearly from a relatively 

large positive value at z = 0.15 to a relatively small negative value at z,*; then above zt*, it 

increases in value towards zero, showing the entrainment (between z = 0.6 and z = 0.7) 
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Figure 4.17. Cross sections of contoured potential temperature fields using rotated horizontal axes from 

Figure 4.7: (Top) 0* is contoured along the Xr* axis, and (Bottom) 9* is contoured along the Yr* 
axis. Shaded regions represent negative values while lighter regions represent positive values. 
The contour interval is consistent in the top and bottom frames, as well as with Figure 4.18. 
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Figure 4.18. Cross sections of contoured potential temperature fields using rotated horizontal axes from 
Figure 4.9: (Top) 0* is contoured along theXr* axis, and (Bottom) 6* is contoured along the Yr* 
axis. Shaded regions represent negative values while lighter regions represent positive values. 
The contour interval is consistent in the top and bottom frames, as well as with Figure 4.17. 
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Figure 4.19. Profile of the (layer-averaged) dimensionless heat flux for Case 1. 
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Figure 4.20. Profile of the (layer-averaged) dimensionless heat flux for Case 2. 
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of warm inversion layer air into the boundary layer. At the lower boundary, however, the 

fluxes return to near zero values, which is not representative of a cool MABL over a 

warm ocean when the proper subgrid components are included. The heat flux reverts to 

zero as a consequence of the imposed boundary condition (2.36), but is acceptable for the 

BLCE scale (e.g., Brummer 1985; Becker 1987; Chlond 1987). 

The vertical transport of horizontal momentum (i.e., the mean momentum flux) is 

depicted in Figure 4.21 for Case 1 and Figure 4.22 for Case 2. Though lacking the detail 

given by calculating the momentum in the separate x*- and ./-components, these mean 

momentum profiles, which are calculated using standard flux equations (Stull 1988), are 

good indicators of the overall momentum transport by the model solutions. From Figure 

4.22, we observe that the maximum flux of momentum occurs near z = 0.35 for Case 2. 

This is reassuring, for it is relatively consistent with our findings for the maximum vertical 

velocity, discussed earlier; we are also pleased that the flux values in the inversion are 

negligible. Case 1, which is shown in Figure 4.21, shows a local maximum at z = 0.3 but 

a much greater maximum in the inversion layer. While this correlates well with the Case 1 

vertical velocity profile in Figure 4.15, as we expect, the presence of a momentum flux 

maximum in the inversion is somewhat disconcerting and worthy of further study. 

The secondary circulations determined by the model alter the background mean wind 

profile through horizontally-independent modifications, which come only from the y/0j 

and TJQJ components (Haack and Shirer 1992). In Figure 4.23 (Case 1) and Figure 4.24 

(Case 2), we plot the background wind speed |V(z)| and the modified plus background 

wind speed |V(z) + vmod(z)| on the same graph. This latter wind value at (z* = h^), known 

also as the post roll/cell wind, is what would be diagnosed from a SAR image. For both 

cases, we clearly show that the BLCE circulations are redistributing the shear in the 

boundary layer, as was noted by Haack and Shirer (1992). We also note that the 

magnitude of the change in wind speed is in line with the findings of Haack and Shirer 
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Figure 4.21. Profile of (layer-averaged) dimensionless momentum flux for Case 1. 
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Figure 4.22. Profile of (layer-averaged) dimensionless momentum flux for Case 2. 
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Figure 4.23. Profile of background and modified (post-cell) wind speeds for Case 1. 
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Figure 4.24. Profile of background and modified (post-cell) wind speeds for Case 2. 
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(1992), and is sufficient to alter the linear analysis significantly. The modified wind speed 

profiles are quite similar for Cases 1 and 2, although the wind speed decreases more 

rapidly near the surface for Case 1, indicating slightly greater shear in the lowest portions 

of the MABL. According to the Woodcock (1975) diagram in Figure 4.1, we would 

expect regimes with stronger winds at 10 m (//&?) to have a higher likelihood of becoming 

quasi-two-dimensional than regimes with weaker 10 m winds. This is consistent with our 

case study result because the modified wind speed at his for Case 1 is approximately 0.4 

m/s, while the speed at hus for Case 2 is 1.3 m/s. Though not a large absolute difference, 

the relative difference is not insignificant. We therefore postulate that Case 1 evolved into 

a three-dimensional solution consistent with the reduction in the wind speed at the lower 

boundary, while Case 2 remained a quasi-two-dimensional solution consistent with an 

increase in the wind speed at the lower boundary. 

We further propose that the Woodcock (1975) diagram be reformulated as a statistical 

probability graph rather than an absolute predictor of regime type. We could do this by 

adding contours of constant probability to the chart to determine the odds of obtaining 

rolls or cells based upon the input parameter values (i.e., location on the diagram); such 

contours could be resolved experimentally based upon the relative number of runs that 

give quasi-two- or three-dimensional solutions. For example, the demarcation line 

between rolls and cells on Figure 4.1 would most likely represent the 50 percent 

probability line of obtaining one or the other regime type. Our early model runs also 

support a probabilistic approach to interpretation of the diagram (e.g., Table 4.4 for Case 

1). In Figures 4.23 and 4.24, we observe that shear is minimal in the inversion layer, 

consistent with observations. Additionally, the modified wind speed profiles for each case 

contain two points of inflection, whereas the background wind speed profile contained 

none. We stated previously that an inflection point in the wind speed profile is a necessary 

condition for cells to align normal to the direction of the mean wind (Brown 1980), as we 

found for Case 1; however, it is not a sufficient condition because our Case 2 rolls aligned 
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nearly parallel to the direction of the mean wind despite the presence of inflection points in 

the modified wind profile. 

The wind direction profiles, though not shown here, indicate negligible turning shear 

for Case 1 and moderate turning shear for Case 2. Essentially then, we classify Case 1 as 

a pure speed shear case, while we classify Case 2 as a speed and turning shear case. Case 

1, whose cellular structure is aligned nearly normal to the mean wind, is fully consistent 

with Brown (1980); while Case 2, whose rolls are aligned 14° to the right of the 

background wind, is predicted to be 40° to the left of the mean wind. However, Brown 

(1980) notes that in cases with both speed and turning shear "rows may occur at various 

angles, often depending on the layer stratification, such that positive buoyancy acts to 

align the rows with the mean velocity." We are encouraged by these consistencies. 

4.3. Case Study Conclusions 

The results obtained in this study of the Sonde 1 case from Hi-Res 2 clearly show that 

the model is capable of capturing the spatial organization of roll and cell circulations in the 

MABL. The addition of an inversion layer appears to more realistically cap the secondary 

circulations (Laufersweiler and Shirer 1995) than did the rigid lid used in earlier runs and 

in other studies (e.g., Lambert 1995). In the presence of a quasi-equilibrated solution and 

weak to moderate forcing, we can now reasonably expect the inversion to consistently cap 

boundary layer secondary circulations. We are also pleased that the vertical profiles of 

heat and momentum fluxes respond well to the addition of an inversion layer, especially 

matching the results of Laufersweiler and Shirer (1995) for Case 2. The appearance of 

narrow updrafts and broad downdrafts in the Case 2 vertical velocity cross section is 

another encouraging aspect of our findings. Most notable, however, is the ability of the 

model to reproduce realistic stress patterns at the lower boundary and to select 

appropriate orientation angles relative to the mean background wind. In developing their 
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algorithm to extract wind data from SAR imagery, Wackerman et al. (1996) made the 

assumption that stress patterns are inherently aligned with the direction of the mean 

background wind "to within a 180° ambiguity." In most cases during our study-about 95 

percent of the time~we found this to be true and therefore concur that they have made a 

valid assumption. However, we must always remember that it is possible for rolls and 

cells to align normal to the direction of the mean wind, especially in the presence of an 

inflection point in the wind profile; our Case 1 results lucidly convey this result. 

Overall, the model performed well in replicating the atmospheric conditions of Hi-Res 

2. During the course of our research, however, we noted several areas that should be 

addressed in the near future: 

1) After implementing the inversion subroutine and a numerically accurate temporal 

finite differencing scheme, we did not find attainment of a fully equilibrated model solution 

to be possible within a reasonable amount of time. The addition of a surface layer, 

nonlinear diffusion and a scale factor Sf have helped tremendously, but we feel that further 

numerical techniques are required to increase the speed of integration, without 

compromising the accuracy. Another option would be to find better seed initial 

conditions-using the last vector v from Case 2 (at 150,000 s) would be a good starting 

point for all future case studies. Should these proposals not resolve the problem, we 

recommend that more vertical wavenumbers be added to the model to improve the 

resolution given by the spectral truncation. The addition of more horizontal 

wavenumbers, which would allow the representation of cell broadening (Chang and Shirer 

1984), is warranted as well. 

2) The subgrid parameterization of fluxes should be addressed so that qualitatively 

correct heat and momentum flux calculations can be obtained down to the lower boundary 

height HLB. This might be accomplished by inserting subgrid heat flux terms (produced 
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only by the horizontally-independent modification coefficients 0OJ) into the roll potential 

temperature NDS equations for 0V (2.39). Such a parameterization would be an 

application of the eddy form 

a        az az 
m-*.(„"?>) „K£*fLt (4.6) 

where the double primes denote sub-model values where the number of wavenumbers 

exceeds four and 9m is the height-only-dependent portion of the 0* expansion in (2.39). 

3) Study the linear portion of the model more fully to determine the sensitivity of the 

preferred ax and ay values to the wind profile, inversion strength and other parameters. 

4) Experiment further with the scale factor Sf, nonlinear dissipation rate d and the 

surface layer depth ZSL to better understand the effects they (individually and collectively) 

have on the model solutions. An emphasis should be placed on the physical significance of 

these numerical adjustments. 

5) Create an algorithm (to improve Woodcock's [1975] diagram) to assist in 

predicting the expected structural type of a given regime. We need to define how the 

winds at the top of the domain or how the inversion strength should best be incorporated 

to make improved planform predictions, as well as assess the plausibility of converting the 

diagram to one of probability type, on which lines of equal probability of observing a 

planform dimension are given. For instance, this would help us determine whether or not 

our quasi-two-dimensional Case 2 is likely to occur in the MABL with the given 

parameter values, even though it lies in the cellular regime. 
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6) Develop a three-dimensional visualization algorithm that is incorporated into all 

future model development. 

7) Study further the presence of vertical velocity and momentum flux maxima in the 

inversion layer for Case 1. 

8) Conduct case studies using Hi-Res 2 Sonde 2 data, listed in Table 4.1, as well as 

other cases from subsequent field projects. 

Significant alterations have been made to the model during the course of this study, 

and we are pleased that model solutions have improved greatly as a result. With the 

implementation of the recommendations noted above, the model should become a reliable 

tool to help ascertain the impact that BLCE have on stress at the sea surface by defining 

typical wind profiles and profile modifications, and by giving structural types of stress 

patterns. 
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